Db2 to Snowflake

This page provides you with instructions on how to extract data from Db2 and load it into Snowflake. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Db2?

Db2 is IBM's relational DBMS. IBM provides versions of Db2 that run on-premises, hosted by IBM, or in the cloud. The on-premises version runs on System z mainframes, System i minicomputers, and Linux, Unix, and Windows workstations.

What is Snowflake?

Snowflake is a cloud-based data warehouse service that runs on Amazon Web Services using EC2 and S3 instances. Snowflake is designed to be fast, flexible, and easy to work with. For instance, for query processing, Snowflake creates virtual warehouses that run on separate compute clusters, so querying one virtual warehouse doesn't slow down the others.

Getting data out of Db2

The most common way to get data out of any relational database is to write SELECT queries. You can specifying filters and ordering, and limit results. You can also use the EXPORT command to export the data from a whole table.

Preparing data for Snowflake

Depending on your data structures, you may need to prepare your data before loading. Check the supported data types for Snowflake and make sure that your data maps neatly to them.

Note that you won't need to define a schema in advance when loading JSON or XML data into Snowflake.

Loading data into Snowflake

Turn to Snowflake's Data Loading Overview for help with the task of loading your data. If you're not loading a lot of data, you might be able to use Snowflake's data loading wizard, but its limitations make it unsuitable as a reliable ETL solution for some use cases. As an alternative, you can:

  • Use the PUT command to stage files.
  • Use the COPY INTO table command to load prepared data into an awaiting table.

You’ll have the option of copying from your local drive or from Amazon S3 – and Snowflake lets you make a virtual warehouse to power the insertion process.

Keeping Db2 data up to date

So you've written a script to export data from Db2 and load it into your data warehouse. That should satisfy all your data needs for Db2 – right? Not yet. How do you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow; if latency is important to you, it's not a viable option.

Instead, you can identify some key fields that your script can use to bookmark its progression through the data, and pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in Db2.

Other data warehouse options

Snowflake is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Amazon Redshift, Google BigQuery, PostgreSQL, or Microsoft Azure Synapse Analytics, which are RDBMSes that use similar SQL syntax, or Panoply, which works with Redshift instances. Others choose a data lake, like Amazon S3 or Delta Lake on Databricks. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To Redshift, To BigQuery, To Postgres, To Panoply, To Azure Synapse Analytics, To S3, and To Delta Lake.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to move data from Db2 to Snowflake automatically. With just a few clicks, Stitch starts extracting your Db2 data, structuring it in a way that's optimized for analysis, and inserting that data into your Snowflake data warehouse.